
Stochastic theory of log-periodic patterns

This article has been downloaded from IOPscience. Please scroll down to see the full text article.

2000 J. Phys. A: Math. Gen. 33 9131

(http://iopscience.iop.org/0305-4470/33/50/301)

Download details:

IP Address: 171.66.16.124

The article was downloaded on 02/06/2010 at 08:45

Please note that terms and conditions apply.

View the table of contents for this issue, or go to the journal homepage for more

Home Search Collections Journals About Contact us My IOPscience

http://iopscience.iop.org/page/terms
http://iopscience.iop.org/0305-4470/33/50
http://iopscience.iop.org/0305-4470
http://iopscience.iop.org/
http://iopscience.iop.org/search
http://iopscience.iop.org/collections
http://iopscience.iop.org/journals
http://iopscience.iop.org/page/aboutioppublishing
http://iopscience.iop.org/contact
http://iopscience.iop.org/myiopscience


J. Phys. A: Math. Gen. 33 (2000) 9131–9140. Printed in the UK PII: S0305-4470(00)16966-5

Stochastic theory of log-periodic patterns

Enrique Canessa
The Abdus Salam International Centre for Theoretical Physics, PO Box 586, Trieste, Italy

E-mail: canessae@ictp.trieste.it

Received 8 September 2000

Abstract. We introduce an analytical model based on birth–death clustering processes to help
in understanding the empirical log-periodic corrections to power law scaling and the finite-time
singularity as reported in several domains including rupture, earthquakes, world population and
financial systems. In our stochastic theory log-periodicities are a consequence of transient clusters
induced by an entropy-like term that may reflect the amount of co-operative information carried by
the state of a large system of different species. The clustering completion rates for the system are
assumed to be given by a simple linear death process. The singularity at t0 is derived in terms of
birth–death clustering coefficients.

1. Overview

Increasing evidence of accelerated patterns having an overall power law behaviour with
superimposed log-periodic oscillations has been found in a variety of applied domains. These
observations have been reported in a series of experiments on rupture in heterogeneous
media [1, 2] and from the historical data analysis of earthquakes [3–6], world population [7]
and financial stock markets [8–13] (see the examples in figure 1). It has been also argued that
log-periodic corrections to scaling should be present in a wider class of out-of-equilibrium
dynamical systems (see, for example, [14, 15]). The logarithmic modulations are periodic in
t − t0 and not on t and are precursors to a spontaneous finite-time singularity t0 at which they
accumulate.

The interest in log-periodic corrections to power law scaling is twofold. On the one hand
they enhance the fit quality to observed data with better precision than simple power laws by
adjusting the (frequency, local minima and maxima of) oscillations. On the other hand, their
real-time monitoring could, in principle, allow for an enhancement of predictions in different
contexts [15, 16].

At the theoretical level, log-periodic oscillatory structures have been associated to the
existence of complex fractal dimensions [9] and critical exponents [15–18]. However, as
pointed out in [19], predictions of stock market crashes using complex critical exponents
should be taken with some care, not only because of the many fitting parameters required but
also because the time period used to perform the fit is rather long [20]. This does not mean that
the apparent acceleration and the log-periodic modulation do not actually exist—the whole
subject deserves further investigation.

Most recently, log-periodic patterns associated with financial crashes have also been
shown to stem from models for stock markets inspired by percolation phenomena [21–23].
Furthermore, logarithmic oscillations have been found in an off-lattice bead–spring model of
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a polymer chain in a quenched porous medium under the influence of an external field [24]
and in a uniform spin model on a fractal [25]. However, apart from these simulation studies,
there is no a convincing microscopic theoretical model which substantiates the idea that the
singularity at finite t0 (for example, a financial crash) is a critical point. Also, there is as yet
no a fundamental theory that substantiates the claim for the precursory, universal log-periodic
oscillations on large time scales.

In this paper we attempt to provide a new scenario within which to elaborate an analytical
microscopic theory and contribute towards an understanding of the underlying physics of log-
periodic patterns. We introduce a stochastic model based on birth–death clustering processes
to sustain the claim of log-periodic corrections to scaling and of a finite-time singularity. In
our theory, transient clusters are formed following an entropy-like formula that may reflect
the amount of co-operative information (or disorder) carried by the state of a large system
of different species. The clustering completion rates for the system are assumed to be
exponentially distributed according to a simple linear death process. The singularity at t0
is derived in terms of birth–death clustering coefficients.

2. Stochastic theory

We write the governing equation for power law behaviour decorated by large-scale log-periodic
oscillations as a superposition of two terms

G(t) = G0(t) +G∞(t) (1)

where G0 takes the form of a pure power law and G∞ represents the (universal periodic)
corrections.

Similarly to [1, 3], the first term is taken to be

dG0(t)

dt
= κ(t0 − t)α−1 (2)

with t0 a finite time at which a singularity appears and the exponent α satisfies α �= 1.
Integration of this equation yields

G0(t) = G0(t0)− κ

α
(t0 − t)α. (3)

In the following we seek for an approximate form to the correction term G∞.

2.1. Galerkin finite-element method for GN(s, t)

The starting point of our theory is to assume that the two-dimensional (for example, energy-
and time-dependent) GN function of a discretized system of N nodes is the solution of some
nonlinear differential equation (for example, a diffusion equation with particular boundary
conditions) which we do not know but which we shall derive an answer for.

Using the standard Galerkin finite-element method described in the appendix (see also,
for example, [26]), a general trial solution to this unknown differential equation can be
approximated as

GN(s, t) ≡
N∑
j=0

gj (s)P̃j (t) (4)

where gj are basic (interpolation) functions, and P̃j are the so-called test functions. The terms
gj (s) are often referred to as trial functions and equation (4) as the trial solution at nodal points.
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Without loss of generality, for all t and different j -states we can rewrite P̃ in a more
suitable form as the sum of even and odd parts:

P̃j (t) = p2j (t) + p2j+1(t) (j = 0, 1, 2, . . . , N). (5)

This means that P̃0 = p0 + p1, P̃1 = p2 + p3, P̃2 = p4 + p5, . . . .
Hence, in the limit N → ∞, we then get

∞∑
j=0

pj (t) =
∞∑
j=0

P̃j (t) ≡ 1. (6)

This result will prove useful later when we associate the test functions P̃j with the equilibrium
state probabilities to be characterized by birth–death processes.

2.1.1. Birth–death model for pj (t)—effect of disorder. The test functions P̃j (t) are usually
determined by solving a system of differential equations (in time) generated by some governing
equation, and if N is made arbitrarily large the error introduced becomes small (see the
appendix). In order to gain insight into the dynamics leading to log-periodic structures, we
next take a different approach and relate the test functions to a large number of processes
forming clusters or aggregates that change as a function of time (for example, cell populations,
customers queueing, interactive multi-agent ensembles, investors groups) acting collectively
to pass on information or to introduce system disorder.

We assume that stochastic ‘birth’ and ‘death’ clustering processes occur according to a
simple one-dimensional birth-and-death model (see, for example, [27]). The state probabilities
pj (t) in this case are obtained recursively from

λ̂j (t)pj (t) = µ̂j+1(t)pj+1(t) (j = 0, 1, 2, . . .). (7)

By a choice of the birth coefficients λ̂j > 0 and of the death coefficients µ̂j > 0, various
stochastic models can be constructed (for example, queueing models in which costumers
correspond to the ‘population’, arrivals are ‘births’ and departures are ‘deaths’). In other
words, the quantity λ̂ is interpreted as the birth rate and µ̂ the death rate when the population
is at the state j .

Equation (7) together with the normalization condition of equation (6) can easily be solved
to yield the following statistical-equilibrium state distribution (as seen from an arbitrary outside
observer);

pj (t) = λ̂0(t)λ̂1(t) . . . λ̂j−1(t)

µ̂1(t)µ̂2(t) . . . µ̂j (t)
p0(t). (8)

This means that for each time t > 0 the state probabilities can, in principle, be determined
subject to specification of the initial conditions p0(t) (i.e. the so-called absorbing state) and
the product of birth–death ratios at all previous states.

To obtain the above transient solution for pj (t) (i.e. for finite t) in closed form, it is
necessary to postulate basic expressions for λ̂j and µ̂j . Here we assume that—for the case of
a finite probability distribution, i.e. pj (t) > 0 (with j = 1, 2, . . . , N)—clusters form via an
entropy-like formula

λ̂j (t) = −
M∑
k=1

λk(t) ln λk(t) > 0 (j = 0, 1, 2, . . . , N − 1) (9)

with λ > 0 for all k. According to information theory [28], the shape of our birth coefficients
may reflect the measure of co-operative information carried by the outcomes λ1, . . . , λM (or
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the amount of disorder in the discrete observable λ̂j ) in a system of M different species or
types (for example, human gender, financial traders).

On the other hand, in analogy to Erlang loss systems [27], we assume the clustering
completion rate for the system in state j to be exponentially distributed (with rate µ > 0);
hence we deal with simple linear death processes

µ̂j (t) = jµ(t) (j = 1, 2, . . . , N). (10)

Then, the equilibrium state probabilities given by equation (8) become

pj (t) = (−1)j

j !

[ M∑
k=1

ak ln λk(t)

]j
p0(t) (j = 0, 1, 2, . . . , N) (11)

where the per capita ratio ak ≡ λk(t)/µ(t) > 0 is, for simplicity, assumed to be time
independent. This means that λk and µ should both scale as power laws of the form ∼�t±n.

By using the normalization condition of equation (6) plus (11) and the Taylor series
expansions for the exponential function, we also obtain

p0(t) ≡
[ ∞∑
j=0

(−1)j

j !
�
j

M(t)

]−1

= e�M(t) (12)

where

�M(t) ≡
M∑
k=1

ak ln λk(t) = ln
M∏
k=1

λ
ak
k (t) = lnp0(t). (13)

Now that we have a precise formulation for P̃j (t), we can set trial functions for the basic
interpolation functions gj to solve for GN(s, t) given in equation (4).

2.1.2. Trial gj (s) functions. The efficiency of the Galerkin formulation is very dependent on
making the correct choice of the approximating test and trial functions (see the appendix). Of
the many nodal unknowns that could be candidates, here we consider the polynomial expansion

gj (s) ≡ γ

(s − 1)j
= γ

{
(−1)j +

(
j

1

)
(−1)j−1s +

(
j

2

)
(−1)j−2s2 + · · ·

}
(14)

with s a dimensionless variable.
Substitution of equation (11) into (5) and using (13) plus these trial functions gives the

approximate trial solution

GN(s, t) = γp0(t)

N∑
j=0

1

(s − 1)j

{
(−1)2j

(2j)!
�

2j
M (t) +

(−1)2j+1

(2j + 1)!
�

2j+1
M (t)

}
(15)

as is easily verified.
We shall see next that our gj functions are a judicious choice.

2.2. Onset of log-periodicity

Let us consider large systems in statistical equilibrium and adopt the following notation for
the required correction term of equation (1) near t0:

G∞(t) ≡ lim
N→∞

GN(s ≈ 0, t). (16)

For the sake of simplicity we have set s ≈ 0 in order to gain insight into the genesis of
log-periodicities.
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As an example, our approximate trial solution of equation (15) thus becomes

G∞(t) = γp0(t)

{ ∞∑
j=0

(−1)j

(2j)!
�

2j
M (t)−

∞∑
j=0

(−1)j

(2j + 1)!
�

2j+1
M (t)

}
. (17)

Using Taylor series expansions for the cosine and sine functions plus the trigonometric
identity cos(a + b) = cos(a) cos(b)− sin(a) sin(b), such that a = π/4 and b/2π ≡ �M(t) in
radians, the above equation then results in

G∞(t) =
√

2γp0(t) cos
(

2π lnp0(t) +
π

4

)
(18)

with p0 satisfying equation (13).
This equation characterizes the complexity of the underlying dynamics of the scaling

systems under consideration. It can be seen that in our stochastic theory the log-periodic
modulation is a consequence of the entropy-like assumption used for the transmission of
information within the birth–death clustering processes.

Using our expression for the initial boundary condition p0 leading to equation (18), we
analyse next the presence of a singularity at a finite time where the oscillations accumulate.

2.3. Finite-time singularity

As discussed in the derivation of equation (11) µ should scale with t , so we set

µ(t) ∼ (t0 − t)±n (19)

where n �= 0 is a given exponent and t0 characterizes the finite-time singularity. Hence,
according to our definitions

λk(t) ∼ ak(t0 − t)±n (20)

which implies that within our stochastic birth–death theory we can consider finite values of
time t < t0 (or n even only if t > t0) since the coefficients λk and µk (and, therefore, ak) are
all positive.

By substitution of this scaling into equation (13), we finally get

p0(t) =
M∏
k=1

λ
ak
k (t) = �M

M∏
k=1

(t0 − t)±nak (21)

where

�M ≡
M∏
k=1

a
ak
k . (22)

Thus, from this relation and equation (18), we are able to derive log-periodic corrections
in the form of G∞ for t < t0.

3. Discussion

Having introduced our theory based on stochastic clustering processes to describe log-periodic
corrections to scaling and a finite-time singularity at t0, we use equations (1), (3), (18) and (21)
to obtain

G(t) = A + B(t0 − t)α + C(t0 − t)β cos(2πβ ln(t0 − t) + ψ) (23)
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Table 1.

A B C α β t0 ψ rms

S&P500 index 1.51 4.34 −0.01 −0.1 1.42 1988.62 1.85 0.053
World population 0.25 1489.74 −25.24 −1.38 −1.04 2054.61 −6.34 0.047
Seismic activity −1.38 1.18 −0.04 −0.74 −1.25 1980.29 0.78 0.414

where A ≡ G0(t0), B ≡ −κ/α, and α are parameters relating the pure power law term of the
governing equation (1), and

C ≡
√

2γ�M β ≡ ±n
M∑
k=1

ak ψ ≡ 2π ln�M +
π

4
(24)

are the parameters of the log-periodic corrections in terms of our stochastic birth–death model
parameters. The fit of this equation to historical random data displaying accelerated precursory
patterns and a spontaneous singularity, which indicates the sharp transition to a new regime,
is presented in figure 1. As illustrative examples, we plot the daily Log(S&P500) stock index
closing values during the years 1982–8 [20], the estimated 1000–2000 world population by
the UN Population Division [29] and the sum of seismic activities measured near the Virgin
Islands between April 1979 and Feb. 1980 [30]. Our best fits with equation (23) to these data
sets were performed as given in table 1.

Examination of the plotted curves shows that equation (23) can model log-periodic
corrections to the leading scaling behaviour and a singularity at t0 in different applied domains
similarly to the methods inspired by renormalization group theory entailing complex critical
exponents. If we set α = β = 1/f we can approach the results obtained in [7–9] where market
crashes, population explosion and culminating large earthquakes are viewed as critical points
in a system with an underlying discrete scale invariance. If we set α �= β, our results are
then comparable to those obtained using the more general ansatz of two different exponents
as in [10]. The main difference of our stochastic theory with respect to the critical exponent
approach is the presence of the exponentβ also appearing in the argument of the cosine function.
Since n and ak are positive, then from equation (24) we have that β �= 0. Furthermore, in our
stochastic theory the finite time t0 is also determined as a function of β, as discussed below.

So far, the fitting in figure 1 allows us to argue that the apparent logarithmic periodicities
in scaling systems may also be understood within the context of a stochastic analytical model
based on birth–death clustering processes which is the distinctive feature of our stochastic
theory. We can interpret the ‘birth’ and the ‘death’ clusterings in different ways: for financial
systems the ‘births’ and ‘deaths’ may represent the buyers and the sellers, respectively; for
population growth, the newborns and deceases would be in correspondence and absorbed and
released energy may relate the ‘births’ and ‘deaths’ in the case of seismic events for finite times
t < t0.

The recurrence equations (7) are conservation-of-flow relations. That is, the long-run rate
at which the system moves up from state j to j + 1 equals the rate at which the system moves
down from state j + 1 to j (i.e. rate up = rate down). Thus, birth–death processes describe
the stochastic evolution in time of a random variable whose values varies (i.e. increases or
decreases) by one in a single event (or state) starting from the absorbing state p0.

The spontaneous singularity is here related to the birth–death coefficients which in turn
determinate p0, i.e. the initial boundary condition at the state j = 0 via equation (12). It is
also important to note that the state distribution coefficient defined by

−
(
pj+1 − pj

pj

)
= 1 +

�M

j + 1
(25)
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Figure 1. Illustrative examples of log-periodic patterns. Full curves are the fits of our birth–death
clustering theory using equation (23). These fits allow us to estimate the total sum of outcomes λk .
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depends on the logarithm of the absorbing state via equation (13).
In the absence of a well-defined nonlinear dynamical equation governing log-periodic

corrections to power law scaling, we have adopted the standard Galerkin finite-element method
as the starting point to search for a general trial solution to this ‘unknown’ differential equation.
The motivation for our basic interpolation functions gj (s) follows computational finite-element
methods which are characterized by the use of polynomials for the known test functions
(obtained from equations (5) to (13)) as well as for the unknown trial functions of equation (14)
in subdomains called finite elements [26].

As discussed in the appendix, our trial gj (s) allow us to solve the matrix equation for the
test functions, which have been related to a large number of (birth–death) processes forming
clusters, provided that the governing equation of the problem is known. These forms, using
s ≈ 0, were taken for convenience to gain insight into the onset of log-periodicities. If we
consider instead small s � 1, we would obtain similar conclusions after some algebra.

We thus argue that log-periodicities are a consequence of transient clusters induced by
the entropy-like term given in equation (9) which may reflect the amount of co-operative
information carried by the state of a large system (i.e.N → ∞) of different speciesM . Using
the definition of the amount of (discrete) finite information or entropy, it can be shown that the
information is additive under concatenation of independent probabilities, as is the logarithm
function. It has been proved that it is possible to define information without necessarily using
the concept of probability (see, for example, [28]). We have adopted the latter definition in
this paper via equation (9) for the birth coefficients. The clustering completion rates for the
system are given by a simple linear death process.

The state probablities pj are normalized via equation (6). We may also consider that the
total sum of outcomes λk is constant for all time as in the Shannon theory of information [28].
Therefore, for the whole range M of different species we set

M∑
k=1

λk(t) ≡ ξt > 0. (26)

We can then estimate the finite time t0 at which a singularity appears from equations (20)
and (24) by considering the initial time t = 0 to thus obtain the relation

t±n0 = ±nξ0

β
. (27)

From the examples in figure 1 we found for the Log(S&P500) stock index n = 0.105 and
ξ0 = 30, for world population n = −0.209 and ξ0 = 1 and for accumulated seismic activity,
n = −0.226 and ξ0 = 1.

The per capita ratios ak plus the exponent n appearing in the scaling of equation (19) are
the minimum ingredients required to derive a complete description of log-periodic corrections
to scaling and finite-time singularities within the framework of a stochastic theory based on
birth–death clustering processes. The positive state distributionspj are determined by n and ak
which also relate the exponent β,C andψ as in equation (23) and t0 as in (27). This means that
such state distributions of the system drive the log-periodic oscillations. We believe that this
feature of our stochastic model can help to elaborate a general microscopic theory to understand
the underlying mechanisms of log-periodic patterns. In the case of financial systems, such a
microscopic theory should also explain the peculiar statistical features in short time scales such
as the highly correlated variance or volatility of price fluctuations [31, 32], by exploring the
state distribution coefficient given by equation (25).
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Appendix. The Galerkin formulation

In this appendix, the key features of the standard Galerkin finite-element method are stated
concisely for completeness [26]. If a 2D problem in a domainD(x, y) is governed by a linear
differential equationL(u) = 0, with boundary conditions S(u) = 0 on δD, i.e. the boundary of
D, then the Galerkin method assumes that u can be accurately represented by the approximate
trial solution

u(x, y) = u0(x, y) +
N∑
j=1

aj (y)φj (x) (28)

where theφj are known trial analytical functions,u0 is chosen to satisfy the boundary conditions
and the aj are test functions to be determined.

To obtain the unknown aj , the inner product of the weighted residual R is set equal to
zero:

(R, φk) ≡
∫ ∫

D

Rφk dx dy = 0 k = 1, . . . , N (29)

where

R(a0, a1 . . . aN , x, y) ≡ L(u) = L(u0) +
N∑
j=1

aj (y)L(φj ). (30)

Since this example is based on a linear L(u), then the above can be rewritten as a matrix
equation for the aj as

N∑
j=1

aj (t)L(φj , φk) = −L(u0, φk). (31)

Substitution of the aj resulting from this equation into (28) gives the required approximate
solution u(x, y).

References

[1] Anifrani J-C, Le Floc’h C, Sornette D and Souillard B 1995 J. Phys. I (France) 5 631
[2] Johansen A and Sornette D 1998 Int. J. Mod. Phys. C 9 433

Johansen A and Sornette D 2000 Preprint http://arXiv.org/abs/cond-mat/0003478
[3] Sornette D and Sammis C 1995 J. Phys. I (France) 5 607
[4] Saleur H, Sammis C G and Sornette D 1996 J. Geo. Res. 101 17 661
[5] Johansen A, Sornette S, Wakita H, Tsunogai U, Newman W I and Saleur H 1996 J. Phys. I (France) 6 1391
[6] Johansen A, Saleur H and Sornette D 2000 Eur. Phys. J B 15 551
[7] Johansen A and Sornette D 2000 Preprint http://arXiv.org/abs/cond-mat/0002075
[8] Johansen A and Sornette D 1997 Physica A 245 411

Johansen A and Sornette D 2000 Eur. Phys. J B 17 319
Johansen A and Sornette D 1999 Preprint http://arXiv.org/abs/cond-mat/9907270

[9] Sornette D, Johansen A, Arneodo A, Muzy J F and Saleur H 1996 Phys. Rev. Lett. 76 251
[10] Feigenbaum J A and Freud P G O 1996 Int. J. Mod. Phys. B 10 3737

Feigenbaum J A and Freud P G O 1998 Mod. Phys. Lett. B 12 57
[11] Gluzman S and Yukalov V I 1998 Mod. Phys. Lett. B 12 75
[12] Vandewalle N, Boveroux Ph, Minguet A and Ausloos M 1998 Physica A 255 201

see also Vandewalle N, Boveroux Ph, Minguet A and Ausloos M 1998 Eur. J. Phys. B 4 139
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